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Motivation

Let X/Fq be a genus g curve. Let D1 = P1 + · · ·+ Pn and D2 be two
divisors over X with disjoint support such that the points Pi are rational
and 2g − 2 < deg(D2) < n respectively. Let

ΩX (D1 − D2) = {ω ∈ Diff(X ) : div(ω) ≥ D2 − D1}.

The Goppa code C(X ,D1,D2) is the image of the Fq-linear map
ΩX (D1 − D2)→ Fn

q defined by

ω 7→ (resP1(ω), ..., resPn (ω)).

Let (n, k, d) be the parameters of the code; then k = g − 1 + n− deg(D2)
and

k
n +

d
n ≥ 1 +

1
n −

g
n .
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Bounds on the Number of Points of Curves over Fq

Let C/Fq be a curve. Set N(C) = |C(Fq)|.

Question: How big can N(C) be?

Introduce Nq(g) = max
C/Fq

g(C)=g

N(C).

Upper bounds:
I Hasse-Weil-Serre bound:

|Nq(g)− q − 1| 6 g · b2√qc;

I Oesterlé bounds;
I articles of Howe and Lauter (’03, ’12),. . .

V. Ducet and C. Fieker (IML, FMUK) Computing Equations of Curves C2 2012 3 / 17



Bounds on the Number of Points of Curves over Fq

Let C/Fq be a curve. Set N(C) = |C(Fq)|.

Question: How big can N(C) be?

Introduce Nq(g) = max
C/Fq

g(C)=g

N(C).

Upper bounds:
I Hasse-Weil-Serre bound:

|Nq(g)− q − 1| 6 g · b2√qc;

I Oesterlé bounds;
I articles of Howe and Lauter (’03, ’12),. . .

V. Ducet and C. Fieker (IML, FMUK) Computing Equations of Curves C2 2012 3 / 17



Bounds on the Number of Points of Curves over Fq

Let C/Fq be a curve. Set N(C) = |C(Fq)|.

Question: How big can N(C) be?

Introduce Nq(g) = max
C/Fq

g(C)=g

N(C).

Upper bounds:
I Hasse-Weil-Serre bound:

|Nq(g)− q − 1| 6 g · b2√qc;

I Oesterlé bounds;
I articles of Howe and Lauter (’03, ’12),. . .

V. Ducet and C. Fieker (IML, FMUK) Computing Equations of Curves C2 2012 3 / 17



Lower bounds: Find curves with as many points as possible.

Possible methods:
I curves with explicit equations: Hermitian curves, Ree curves, Suzuki

curves,. . .
I curves defined by explicit coverings: Artin-Schreier-Witt, Kummer,. . .
I curves with modular structure: elliptic or Drinfel’d modular curves,. . .
I curves defined by a non-explicit covering: abelian coverings (Class

Field Theory, Drinfel’d modules),. . .

Our approach: Class Field Theory.
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Function Fields

Let K be an algebraic function field over Fq, that is a finite algebraic
extension of Fq(X ) for an indeterminate X .

To a curve C/Fq one can associate its function field Fq(C).

Example:
If C = V (P(x , y)), then Fq(C) = Fq(x)[y ]/P(x , y).

Theorem:
The two categories are equivalent.

We thus have totally equivalent notions of genus, divisors,. . . The
equivalent of a point P of a curve is a place and is also denoted (by abuse)
P.
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For a point P of C , consider the subring of its function field

OP = {f ∈ Fq(C) : P is not a pole of f }

with unique maximal ideal

MP = {f ∈ Fq(C) : P is a zero of f }.

The residue field at P is
FP = OP/MP .

The degree of P is
deg(P) = [FP : Fq].

We let N(K ) be the number of places of degree 1 of K.
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Ramification Theory

In a function field extension L/K we have places of L above P:

Q1 Q2 · · · Qs

P

For each place Qi above P, we define the following two positive integers:

MPOQ =Me(Qi /P)
Q (ramification index)

f (Qi/P) = [FQi : FP ] (inertia degree).

L/K is ramified (resp. totally ramified) at P if there exists i such that
e(Qi/P) > 1 (resp. s = 1 and e(Q1/P) = [L : K ]). P is totally split in L if
s = [L : K ].
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Why use Class Field Theory?

Remark:
Let L/K be an algebraic extension of algebraic function fields defined over
Fq. Then

N(L) > [L : K ]#SplitFq (L/K ) + #TotRamFq (L/K ).

Class Field Theory describes the abelian extensions of K in terms of data
intrinsic to K and provides a good control on the ramification and
decomposition behavior in the extension.

Problem: One does not know in general the equations of the abelian
coverings of K (problematic for applications, for example to coding
theory).

This Talk: we explain how to find these equations and describe an
algorithm to find good curves (look at www.manypoints.org).
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The Artin Map

Let L/K be an abelian extension. Let P be a place of K and Q be a place
of L over P. Let FP (resp. FQ) be the residue field of K at P (resp. of L
at Q).

When P is unramified the reduction map GalQ(L/K )→ Gal(FQ/FP) is
an isomorphism. The pre-image of Frobenius is independent of Q; one
denotes it by (P, L/K ) and call it the Frobenius automorphism at P.

Definition:
The map P 7→ (P, L/K ) ∈ Gal(L/K ) can be extended linearly to the set
of divisors supported outside the ramified places of L/K. The resulting
map is called the Artin map and is denoted (· , L/K ).
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Class Field Theory
Definition:
A modulus on K is an effective divisor.

Let m be a modulus supported on a set S ⊂ PlK , we denote by Divm the
group of divisors which support is disjoint from S. Set

Pm,1 = {div(f ) : f ∈ K× and vP(f − 1) ≥ vP(m) for all P ∈ S}.

Definition:
A congruence subgroup modulo m is a subgroup H < Divm of finite index
such that Pm,1 ⊆ H.

Existence Theorem:
For every modulus m and every congruence subgroup H modulo m, there
exists a unique abelian extension LH of K, called the class field of H, such
that the Artin map provides an isomorphism

Divm/H ∼= Gal(LH/K ).
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Artin Reciprocity Law:
For every abelian extension L/K , there exists an admissible modulus m
and a unique congruence subgroup HL,m modulo m, such that the Artin
map provides an isomorphism

Divm/HL,m
∼= Gal(L/K ).

Definition:
The conductor of L/K, denoted fL/K , is the smallest admissible modulus.
It is supported on exactly the ramified places of L/K.

Main Theorem of Class Field Theory:
Let m be a modulus. There is a 1-1 inclusion reversing correspondence
between congruence subgroups H modulo m and finite abelian extensions
L of K of conductor smaller than m. Furthermore the Artin map provides
an isomorphism

Divm/H ∼= Gal(L/K ).
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Computing Abelian Extensions

Data: Let m be a modulus over K and H be a congruence subgroup
modulo m.

Goal: Compute the class field L of H.

Assumption: Divm/H ∼= Z/`mZ for a prime number ` and an integer
m > 1. Two cases: ` = p def

= char(K ) or ` 6= p.

Strategy: Using respectively Artin-Shreier-Witt and Kummer theories,
find an abelian extension M of K containing L for which we can compute
explicitly the Artin map. Then compute L as the subfield of M fixed by
the image of H.
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M

L

??

K
Divm/H

__

OO

Remark:
Let P ∈ PlK . Then (P,M/K )|L = (P, L/K ).

So
(H,M/K ) = {(P,M/K ) : P ∈ H}

= {σ ∈ Gal(M/K ) : σ|L = IdL}
= Gal(M/L).

Galois Theory implies L = M(H,M/K).
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Cyclic Extensions of Prime Degree

Proposition:
Let L/K be a cyclic extension of prime degree ` and of conductor fL/K .
Assume that they are defined over Fq. Then the genus of L verifies:

gL = 1 + `(gK − 1) +
1
2(`− 1) deg(fL/K ).

Remark:
There seems to be no dependence on the ramification type of the
extension (tame or wild), but in fact:

Proposition:
A place P of K is wildly ramified in L if and only if fL/K > 2P (and thus
tamely ramified if and only if vP(fL/K ) = 1).
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The Algorithm
Input: A function field K/Fq, a prime `, an integer G .
Output: The equations of all cyclic extensions L of K of degree ` such

that g(L) 6 G and N(L) improves the best known record.
1. Compute all the moduli of degree less than

B = (2G − 2− `(2g(K )− 2))/(`− 1).
2. for each such modulus m do
3. Compute the ray class group Picm ∼= Divm/Pm,1.
4. Compute the set T of subgroups of Picm of index `.
5. for every H in T do
6. Compute g(L) and n = N(L), where L is the class field of H.
7. if n is greater than the best known record then
8. Update n as the new lower bound on Nq(g(L)).
9. Compute the equation of L.
10. end if
11. end for
12. end for
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New Results over F2

g N = |S|+ |T |+ |R| OB g0 f G
14 16 = 16 + 0 + 0 16 4 2P7 Z/2Z
17 18 = 16 + 2 + 0 18 2 4P1 + 6P1 Z/2Z⊕ Z/2Z
24 23 = 20 + 1 + 2 23 4′ 2P1 + 4P1 + 2P2 Z/2Z⊕ Z/2Z
29 26 = 24 + 2 + 0 27 4 4P1 + 8P1 Z/2Z⊕ Z/2Z
41 34 = 32 + 2 + 0 35 3′ 4P1 + 4P1 Z/2Z⊕ Z/4Z
45 34 = 32 + 2 + 0 37 2 4P1 + 8P1 Z/2Z⊕ Z/4Z
46 35 = 32 + 1 + 2 38 3 3P1 + 8P1 Z/2Z⊕ Z/4Z

g : genus of the covering.
N: number of F2-rational points. OB: Oesterlé bound.

g0: genus of the base curve. f: conductor of the extension.
G : Galois group. S: totally split places.

T : totally ramified places. R: (non-totally) ramified places.
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Example:
Take the genus 2 maximal curve C0 with equation
y2 + (x3 + x + 1)y + x5 + x4 + x3 + x .

Then the new curve of genus 17 with 18 rational points is a fiber product
of Artin-Schreier coverings of C0 with equations z2 + z + (x4 + x2 + x + 1)/x3y + (x6 + x5 + x + 1)/x2;

w2 + w + (x3 + 1)/xy + x + 1.
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