Computing Equations of Curves with Many Points

Virgile Ducet¹ Claus Fieker²

¹Institut de Mathématiques de Luminy

²Fachbereich Mathematik Universität Kaiserslautern

Journées Codage et Cryptographie 2012, 8-12 octobre 2012

Motivation

Let X/\mathbb{F}_q be a genus g curve. Let $D_1=P_1+\cdots+P_n$ and D_2 be two divisors over X with disjoint support such that the points P_i are rational and $2g-2<\deg(D_2)< n$ respectively. Let

$$\Omega_X(D_1-D_2)=\{\omega\in \mathrm{Diff}(X): \mathrm{div}(\omega)\geq D_2-D_1\}.$$

The Goppa code $C(X, D_1, D_2)$ is the image of the \mathbb{F}_q -linear map $\Omega_X(D_1-D_2) \to \mathbb{F}_q^n$ defined by

$$\omega \mapsto (\operatorname{res}_{P_1}(\omega), ..., \operatorname{res}_{P_n}(\omega)).$$

Motivation

Let X/\mathbb{F}_q be a genus g curve. Let $D_1=P_1+\cdots+P_n$ and D_2 be two divisors over X with disjoint support such that the points P_i are rational and $2g-2<\deg(D_2)< n$ respectively. Let

$$\Omega_X(D_1-D_2)=\{\omega\in \mathrm{Diff}(X):\mathrm{div}(\omega)\geq D_2-D_1\}.$$

The Goppa code $C(X,D_1,D_2)$ is the image of the \mathbb{F}_q -linear map $\Omega_X(D_1-D_2)\to \mathbb{F}_q^n$ defined by

$$\omega \mapsto (\operatorname{res}_{P_1}(\omega), ..., \operatorname{res}_{P_n}(\omega)).$$

Let (n, k, d) be the parameters of the code; then $k = g - 1 + n - deg(D_2)$ and

$$\frac{k}{n} + \frac{d}{n} \ge 1 + \frac{1}{n} - \frac{g}{n}$$
.

Bounds on the Number of Points of Curves over \mathbb{F}_q

Let C/\mathbb{F}_q be a curve. Set $N(C) = |C(\mathbb{F}_q)|$.

QUESTION: How big can N(C) be?

Bounds on the Number of Points of Curves over \mathbb{F}_q

Let C/\mathbb{F}_q be a curve. Set $N(C) = |C(\mathbb{F}_q)|$.

QUESTION: How big can N(C) be?

Introduce
$$N_q(g) = \max_{\substack{C/\mathbb{F}_q \ g(C) = g}} N(C)$$
.

Bounds on the Number of Points of Curves over \mathbb{F}_q

Let C/\mathbb{F}_q be a curve. Set $N(C) = |C(\mathbb{F}_q)|$.

QUESTION: How big can N(C) be?

Introduce
$$N_q(g) = \max_{\substack{C/\mathbb{F}_q \ g(C) = g}} N(C)$$
.

Upper bounds:

► Hasse-Weil-Serre bound:

$$|N_q(g)-q-1| \leq g \cdot \lfloor 2\sqrt{q} \rfloor;$$

- Oesterlé bounds;
- ▶ articles of Howe and Lauter ('03, '12),...

LOWER BOUNDS: Find curves with as many points as possible.

LOWER BOUNDS: Find curves with as many points as possible.

Possible methods:

- curves with explicit equations: Hermitian curves, Ree curves, Suzuki curves....
- curves defined by explicit coverings: Artin-Schreier-Witt, Kummer,...
- curves with modular structure: elliptic or Drinfel'd modular curves....
- curves defined by a non-explicit covering: abelian coverings (Class Field Theory, Drinfel'd modules),...

LOWER BOUNDS: Find curves with as many points as possible.

Possible methods:

- ► curves with explicit equations: Hermitian curves, Ree curves, Suzuki curves,...
- ▶ curves defined by explicit coverings: Artin-Schreier-Witt, Kummer,...
- ► curves with modular structure: elliptic or Drinfel'd modular curves,...
- ► curves defined by a non-explicit covering: abelian coverings (Class Field Theory, Drinfel'd modules),...

OUR APPROACH: Class Field Theory.

Let K be an algebraic function field over \mathbb{F}_q , that is a finite algebraic extension of $\mathbb{F}_q(X)$ for an indeterminate X.

Let K be an algebraic function field over \mathbb{F}_q , that is a finite algebraic extension of $\mathbb{F}_q(X)$ for an indeterminate X.

To a curve C/\mathbb{F}_q one can associate its function field $\mathbb{F}_q(C)$.

Let K be an algebraic function field over \mathbb{F}_q , that is a finite algebraic extension of $\mathbb{F}_q(X)$ for an indeterminate X.

To a curve C/\mathbb{F}_q one can associate its function field $\mathbb{F}_q(C)$.

EXAMPLE:

If
$$C = V(P(x, y))$$
, then $\mathbb{F}_q(C) = \mathbb{F}_q(x)[y]/P(x, y)$.

Let K be an algebraic function field over \mathbb{F}_q , that is a finite algebraic extension of $\mathbb{F}_q(X)$ for an indeterminate X.

To a curve C/\mathbb{F}_q one can associate its function field $\mathbb{F}_q(C)$.

EXAMPLE:

If
$$C = V(P(x, y))$$
, then $\mathbb{F}_q(C) = \mathbb{F}_q(x)[y]/P(x, y)$.

THEOREM:

The two categories are equivalent.

We thus have totally equivalent notions of genus, divisors,... The equivalent of a point P of a curve is a *place* and is also denoted (by abuse) P.

For a point P of C, consider the subring of its function field

$$\mathcal{O}_P = \{ f \in \mathbb{F}_q(C) : P \text{ is not a pole of } f \}$$

with unique maximal ideal

$$\mathcal{M}_P = \{ f \in \mathbb{F}_q(C) : P \text{ is a zero of } f \}.$$

The residue field at P is

$$\mathbb{F}_P = \mathcal{O}_P/\mathcal{M}_P$$
.

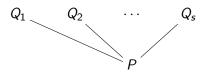
The degree of P is

$$\deg(P) = [\mathbb{F}_P : \mathbb{F}_q].$$

We let N(K) be the number of places of degree 1 of K.

Ramification Theory

In a function field extension L/K we have places of L above P:



For each place Q_i above P, we define the following two positive integers:

$$\mathcal{M}_P \mathcal{O}_Q = \mathcal{M}_Q^{e(Q_i/P)}$$
 (ramification index)

$$f(Q_i/P) = [\mathbb{F}_{Q_i} : \mathbb{F}_P]$$
 (inertia degree).

L/K is ramified (resp. totally ramified) at P if there exists i such that $e(Q_i/P) > 1$ (resp. s = 1 and $e(Q_1/P) = [L : K]$). P is totally split in L if s = [L : K].

Why use Class Field Theory?

REMARK:

Let L/K be an algebraic extension of algebraic function fields defined over \mathbb{F}_q . Then

$$N(L) \geqslant [L:K] \# \operatorname{Split}_{\mathbb{F}_q}(L/K) + \# \operatorname{TotRam}_{\mathbb{F}_q}(L/K).$$

Class Field Theory describes the abelian extensions of K in terms of data intrinsic to K and provides a good control on the ramification and decomposition behavior in the extension.

Why use Class Field Theory?

REMARK:

Let L/K be an algebraic extension of algebraic function fields defined over \mathbb{F}_q . Then

$$N(L) \geqslant [L:K] \# \operatorname{Split}_{\mathbb{F}_q}(L/K) + \# \operatorname{TotRam}_{\mathbb{F}_q}(L/K).$$

Class Field Theory describes the abelian extensions of K in terms of data intrinsic to K and provides a good control on the ramification and decomposition behavior in the extension.

PROBLEM: One does not know in general the equations of the abelian coverings of K (problematic for applications, for example to coding theory).

Why use Class Field Theory?

REMARK:

Let L/K be an algebraic extension of algebraic function fields defined over \mathbb{F}_q . Then

$$N(L) \geqslant [L:K] \# \mathrm{Split}_{\mathbb{F}_q}(L/K) + \# \mathrm{TotRam}_{\mathbb{F}_q}(L/K).$$

Class Field Theory describes the abelian extensions of K in terms of data intrinsic to K and provides a good control on the ramification and decomposition behavior in the extension.

PROBLEM: One does not know in general the equations of the abelian coverings of K (problematic for applications, for example to coding theory).

This Talk: we explain how to find these equations and describe an algorithm to find good curves (look at www.manypoints.org).

The Artin Map

Let L/K be an abelian extension. Let P be a place of K and Q be a place of L over P. Let \mathbb{F}_P (resp. \mathbb{F}_Q) be the residue field of K at P (resp. of L at Q).

When P is unramified the reduction map $\operatorname{Gal}_Q(L/K) \to \operatorname{Gal}(\mathbb{F}_Q/\mathbb{F}_P)$ is an isomorphism. The pre-image of Frobenius is independent of Q; one denotes it by (P, L/K) and call it the *Frobenius automorphism at P*.

DEFINITION:

The map $P \mapsto (P, L/K) \in \operatorname{Gal}(L/K)$ can be extended linearly to the set of divisors supported outside the ramified places of L/K. The resulting map is called the Artin map and is denoted $(\cdot, L/K)$.

Class Field Theory

DEFINITION:

A modulus on K is an effective divisor.

Let $\mathfrak m$ be a modulus supported on a set $S\subset\operatorname{Pl}_{\mathcal K}$, we denote by $\operatorname{Div}_{\mathfrak m}$ the group of divisors which support is disjoint from S. Set

$$P_{\mathfrak{m},1} = \{\operatorname{div}(f) : f \in K^{\times} \text{ and } v_P(f-1) \geq v_P(\mathfrak{m}) \text{ for all } P \in S\}.$$

DEFINITION:

A congruence subgroup modulo $\mathfrak m$ is a subgroup $H<\operatorname{Div}_{\mathfrak m}$ of finite index such that $P_{\mathfrak m,1}\subseteq H.$

EXISTENCE THEOREM:

For every modulus $\mathfrak m$ and every congruence subgroup H modulo $\mathfrak m$, there exists a unique abelian extension L_H of K, called the class field of H, such that the Artin map provides an isomorphism

$$\mathrm{Div}_{\mathfrak{m}}/H \cong \mathrm{Gal}(L_H/K).$$

ARTIN RECIPROCITY LAW:

For every abelian extension L/K, there exists an admissible modulus $\mathfrak m$ and a unique congruence subgroup $H_{L,\mathfrak m}$ modulo $\mathfrak m$, such that the Artin map provides an isomorphism

$$\mathrm{Div}_{\mathfrak{m}}/H_{L,\mathfrak{m}}\cong\mathrm{Gal}(L/K).$$

DEFINITION:

The conductor of L/K, denoted $\mathfrak{f}_{L/K}$, is the smallest admissible modulus. It is supported on exactly the ramified places of L/K.

MAIN THEOREM OF CLASS FIELD THEORY:

Let $\mathfrak m$ be a modulus. There is a 1-1 inclusion reversing correspondence between congruence subgroups H modulo $\mathfrak m$ and finite abelian extensions L of K of conductor smaller than $\mathfrak m$. Furthermore the Artin map provides an isomorphism

$$\operatorname{Div}_{\mathfrak{m}}/H \cong \operatorname{Gal}(L/K).$$

DATA: Let \mathfrak{m} be a modulus over K and H be a congruence subgroup modulo \mathfrak{m} .

DATA: Let \mathfrak{m} be a modulus over K and H be a congruence subgroup modulo \mathfrak{m} .

GOAL: Compute the class field L of H.

DATA: Let \mathfrak{m} be a modulus over K and H be a congruence subgroup modulo \mathfrak{m} .

GOAL: Compute the class field L of H.

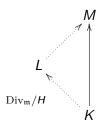
Assumption: $\mathrm{Div}_{\mathfrak{m}}/H \cong \mathbb{Z}/\ell^m\mathbb{Z}$ for a prime number ℓ and an integer $m \geqslant 1$. Two cases: $\ell = p \stackrel{def}{=} \mathrm{char}(K)$ or $\ell \neq p$.

DATA: Let \mathfrak{m} be a modulus over K and H be a congruence subgroup modulo \mathfrak{m} .

GOAL: Compute the class field L of H.

Assumption: $\mathrm{Div}_{\mathfrak{m}}/H \cong \mathbb{Z}/\ell^m\mathbb{Z}$ for a prime number ℓ and an integer $m \geqslant 1$. Two cases: $\ell = p \stackrel{def}{=} \mathrm{char}(K)$ or $\ell \neq p$.

STRATEGY: Using respectively Artin-Shreier-Witt and Kummer theories, find an abelian extension M of K containing L for which we can compute explicitly the Artin map. Then compute L as the subfield of M fixed by the image of H.



REMARK:

Let
$$P \in \text{Pl}_K$$
. Then $(P, M/K)|_L = (P, L/K)$.

So

$$\begin{array}{rcl} (H,M/K) & = & \{(P,M/K): P \in H\} \\ & = & \{\sigma \in \operatorname{Gal}(M/K): \sigma|_L = \operatorname{Id}_L\} \\ & = & \operatorname{Gal}(M/L). \end{array}$$

Galois Theory implies $L = M^{(H,M/K)}$.

Cyclic Extensions of Prime Degree

PROPOSITION:

Let L/K be a cyclic extension of prime degree ℓ and of conductor $\mathfrak{f}_{L/K}$. Assume that they are defined over \mathbb{F}_q . Then the genus of L verifies:

$$g_L=1+\ell(g_K-1)+rac{1}{2}(\ell-1)\deg(\mathfrak{f}_{L/K}).$$

Cyclic Extensions of Prime Degree

PROPOSITION:

Let L/K be a cyclic extension of prime degree ℓ and of conductor $\mathfrak{f}_{L/K}$. Assume that they are defined over \mathbb{F}_q . Then the genus of L verifies:

$$g_L=1+\ell(g_K-1)+rac{1}{2}(\ell-1)\deg(\mathfrak{f}_{L/K}).$$

REMARK:

There seems to be no dependence on the ramification type of the extension (tame or wild), but in fact:

Cyclic Extensions of Prime Degree

PROPOSITION:

Let L/K be a cyclic extension of prime degree ℓ and of conductor $\mathfrak{f}_{L/K}$. Assume that they are defined over \mathbb{F}_q . Then the genus of L verifies:

$$g_L=1+\ell(g_K-1)+rac{1}{2}(\ell-1)\deg(\mathfrak{f}_{L/K}).$$

REMARK:

There seems to be no dependence on the ramification type of the extension (tame or wild), but in fact:

Proposition:

A place P of K is wildly ramified in L if and only if $\mathfrak{f}_{L/K}\geqslant 2P$ (and thus tamely ramified if and only if $v_P(\mathfrak{f}_{L/K})=1$).

The Algorithm

Input: A function field K/\mathbb{F}_q , a prime ℓ , an integer G.

Output: The equations of all cyclic extensions L of K of degree ℓ such that $g(L) \leq G$ and N(L) improves the best known record.

1. Compute all the moduli of degree less than $B = (2G - 2 - \ell(2g(K) - 2))/(\ell - 1)$.

$$D = (2G - 2 - \ell(2g(K) - 2))/(\ell$$

- 2. FOR each such modulus \mathfrak{m} DO
- 3. Compute the ray class group $\operatorname{Pic}_{\mathfrak{m}} \cong \operatorname{Div}_{\mathfrak{m}}/P_{\mathfrak{m},1}$.
- 4. Compute the set T of subgroups of $Pic_{\mathfrak{m}}$ of index ℓ .
- 5. FOR every H in T DO
- 6. Compute g(L) and n = N(L), where L is the class field of H.
- 7. IF n is greater than the best known record THEN
- 8. Update n as the new lower bound on $N_q(g(L))$.
- 9. Compute the equation of L.
- 10. END IF
- 11. END FOR
- 12. END FOR

New Results over \mathbb{F}_2

g	N = S + T + R	OB	g ₀	f	G
14	16 = 16 + 0 + 0	16	4	2P ₇	$\mathbb{Z}/2\mathbb{Z}$
17	18 = 16 + 2 + 0	18	2	$4P_1 + 6P_1$	$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$
24	23 = 20 + 1 + 2	23	4′	$2P_1 + 4P_1 + 2P_2$	$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$
29	26 = 24 + 2 + 0	27	4	$4P_1 + 8P_1$	$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$
41	34 = 32 + 2 + 0	35	3′	$4P_1 + 4P_1$	$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/4\mathbb{Z}$
45	34 = 32 + 2 + 0	37	2	$4P_1 + 8P_1$	$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/4\mathbb{Z}$
46	35 = 32 + 1 + 2	38	3	$3P_1 + 8P_1$	$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/4\mathbb{Z}$

g: genus of the covering.

N: number of F_2 -rational points. OB: Oesterlé bound.

 g_0 : genus of the base curve. f: conductor of the extension.

G: Galois group. S: totally split places.

T: totally ramified places. R: (non-totally) ramified places.

EXAMPLE:

Take the genus 2 maximal curve C_0 with equation

$$y^2 + (x^3 + x + 1)y + x^5 + x^4 + x^3 + x$$
.

Then the new curve of genus 17 with 18 rational points is a fiber product of Artin-Schreier coverings of C_0 with equations

$$\begin{cases} z^2 + z + (x^4 + x^2 + x + 1)/x^3y + (x^6 + x^5 + x + 1)/x^2; \\ w^2 + w + (x^3 + 1)/xy + x + 1. \end{cases}$$